Improving deep convolutional neural networks with mixed maxout units

نویسندگان

  • Hui-Zhen Zhao
  • Fu-Xian Liu
  • Long-Yue Li
چکیده

Motivated by insights from the maxout-units-based deep Convolutional Neural Network (CNN) that "non-maximal features are unable to deliver" and "feature mapping subspace pooling is insufficient," we present a novel mixed variant of the recently introduced maxout unit called a mixout unit. Specifically, we do so by calculating the exponential probabilities of feature mappings gained by applying different convolutional transformations over the same input and then calculating the expected values according to their exponential probabilities. Moreover, we introduce the Bernoulli distribution to balance the maximum values with the expected values of the feature mappings subspace. Finally, we design a simple model to verify the pooling ability of mixout units and a Mixout-units-based Network-in-Network (NiN) model to analyze the feature learning ability of the mixout models. We argue that our proposed units improve the pooling ability and that mixout models can achieve better feature learning and classification performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolutional deep maxout networks for phone recognition

Convolutional neural networks have recently been shown to outperform fully connected deep neural networks on several speech recognition tasks. Their superior performance is due to their convolutional structure that processes several, slightly shifted versions of the input window using the same weights, and then pools the resulting neural activations. This pooling operation makes the network les...

متن کامل

Improving Deep Neural Networks with Probabilistic Maxout Units

We present a probabilistic variant of the recently introduced maxout unit. The success of deep neural networks utilizing maxout can partly be attributed to favorable performance under dropout, when compared to rectified linear units. It however also depends on the fact that each maxout unit performs a pooling operation over a group of linear transformations and is thus partially invariant to ch...

متن کامل

Improving language-universal feature extraction with deep maxout and convolutional neural networks

When deployed in automated speech recognition (ASR), deep neural networks (DNNs) can be treated as a complex feature extractor plus a simple linear classifier. Previous work has investigated the utility of multilingual DNNs acting as language-universal feature extractors (LUFEs). In this paper, we explore different strategies to further improve LUFEs. First, we replace the standard sigmoid nonl...

متن کامل

Phone recognition with hierarchical convolutional deep maxout networks

Deep convolutional neural networks (CNNs) have recently been shown to outperform fully connected deep neural networks (DNNs) both on low-resource and on large-scale speech tasks. Experiments indicate that convolutional networks can attain a 10–15 % relative improvement in the word error rate of large vocabulary recognition tasks over fully connected deep networks. Here, we explore some refineme...

متن کامل

A deep convolutional neural network module that promotes competition of multiple-size filters

The use of competitive activation units in deep convolutional neural networks (ConvNets) is generally understood as a way of building one network by the combination of multiple sub-networks, with each one being capable of solving a simpler task when compared to the complexity of the original problem involving the whole dataset [1]. Similar ideas have been explored in the past using multi-layer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017